Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial cell invasion by Pseudomonas aeruginosa.
نویسندگان
چکیده
We have previously shown that human tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa in vitro and in vivo and that protection does not depend upon tear bacteriostatic activity. We sought to identify the responsible tear component(s). The hypothesis tested was that collectins (collagenous calcium-dependent lectins) were involved. Reflex tear fluid was collected from healthy human subjects and examined for collectin content by enzyme-linked immunosorbent assay (ELISA) and Western blot with antibody against surfactant protein D (SP-D), SP-A, or mannose-binding lectin (MBL). SP-D, but not SP-A or MBL, was detected by ELISA of human reflex tear fluid. Western blot analysis of whole tears and of high-performance liquid chromatography tear fractions confirmed the presence of SP-D, most of which eluted in the same fraction as immunoglobulin A. SP-D tear concentrations were calculated at approximately 2 to 5 microg/ml. Depletion of SP-D with mannan-conjugated Sepharose or anti-SP-D antibody reduced the protective effect of tears against P. aeruginosa invasion. Recombinant human or mouse SP-D used alone reduced P. aeruginosa invasion of epithelial cells without detectable bacteriostatic activity or bacterial aggregation. Immunofluorescence microscopy revealed SP-D antibody labeling throughout the corneal epithelium of normal, but not gene-targeted SP-D knockout mice. SP-D was also detected in vitro in cultured human and mouse corneal epithelial cells. In conclusion, SP-D is present in human tear fluid and in human and mouse corneal epithelia. SP-D is involved in human tear fluid protection against P. aeruginosa invasion. Whether SP-D plays other roles in the regulation of other innate or adaptive immune responses at the ocular surface, as it does in the airways, remains to be explored.
منابع مشابه
Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal.
PURPOSE Mechanisms determining epithelial resistance versus susceptibility to microbial traversal in vivo remain poorly understood. Here, a novel murine model was used to explore factors influencing the corneal epithelial barrier to Pseudomonas aeruginosa penetration. METHODS Murine corneas were blotted with tissue paper before inoculation with green fluorescent protein-expressing P. aerugino...
متن کاملClearance of Pseudomonas aeruginosa from a healthy ocular surface involves surfactant protein D and is compromised by bacterial elastase in a murine null-infection model.
Our previous studies showed that surfactant protein D (SP-D) is present in human tear fluid and that it can protect corneal epithelial cells against bacterial invasion. Here we developed a novel null-infection model to test the hypothesis that SP-D contributes to the clearance of viable Pseudomonas aeruginosa from the healthy ocular surface in vivo. Healthy corneas of Black Swiss mice were inoc...
متن کاملModification of Pseudomonas aeruginosa interactions with corneal epithelial cells by human tear fluid.
Both cytotoxic and invasive strains of Pseudomonas aeruginosa can damage corneal epithelial cells in vitro, but neither can infect healthy corneas in vivo. We tested the hypothesis that whole human tear fluid can protect corneal epithelia against P. aeruginosa virulence mechanisms. Cultured corneal epithelial cells were inoculated with 10(6) CFU of one of 10 strains of P. aeruginosa (five cytot...
متن کاملPseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion
Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aerugi...
متن کاملMicroRNA-762 Is Upregulated in Human Corneal Epithelial Cells in Response to Tear Fluid and Pseudomonas aeruginosa Antigens and Negatively Regulates the Expression of Host Defense Genes Encoding RNase7 and ST2
Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 73 4 شماره
صفحات -
تاریخ انتشار 2005